

 Navigation

 	
 index

 	Shark stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/shark/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/shark/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Shark stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 README.html

 Navigation

 		
 index

 		Shark stable documentation »

 [image: Shark]

![][travis-badge] [https://travis-ci.org/bucaran/shark]

About

Shark is a sparkline [https://en.wikipedia.org/wiki/Sparkline] generator for fish [https://github.com/fish-shell/fish-shell].

Install

git clone https://github.com/bucaran/shark
cd shark
make install
seq 8 | shark
$ ▁▂▃▄▅▆▇█

With Fisherman [https://github.com/fisherman/fisherman]:

fisher install shark

Help

See shark(1) for command usage and examples. For support and feedback browse the issues [http://github.com/bucaran/shark/issues].

Credits

Shark draws heavily from Zach Holman [https://github.com/holman]‘s original Spark [https://github.com/holman/spark]. Thanks to him.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

man/man1/shark.html

 Navigation

 		
 index

 		Shark stable documentation »

shark(1) – Sparkline Generator

SYNOPSIS

shark [options] [--version] [--help]

shark [--line] [--field=format] [--record=format]

shark [--null=string] [--delim=regex]

shark [--min=number] [--max=number]

DESCRIPTION

A sparkline is a type of line chart that provides a simple representation of numerical or statistical variation in some measurement, typically over time.

Shark reads the standard input extracting numeric values and produces a stream of UTF-8 block characters of increasing height. Input is read up to NULL and processed as a single record by default. To process each line as a separate record, use the --line flag.

To process the input in real time, use --max=number and --min=number to set the dataset range in advance.

OPTIONS

		-n --line[=true|false]:
Process each line as a separate record. By default, Shark reads all the input up to NULL and uses the collected numbers as one dataset. --line changes this behavior, and forces Shark to process each line as a separate record and the collected numbers from each record as different datasets.

A single line of input may contain one or more numbers. If a line contains multiple numbers, processing each line separately may be preferred based on your application requirements. To customize the record output format use --record=format.

		-f, --field=format:
Set the field output format. A field or tick is any of the UTF-8 block characters used to represent the numeric values collected from the dataset. format is a printf(1) valid format string. The default value is "%s". You can display the numeric value of the current field using an additional %d. For example, "%s\t%d\n" will display each tick in a new line followed by a tab and the corresponding number collected from the dataset.

		-r, --record=format:
Set the record output format. Typically, a record consists of a single line of input and a dataset of one or more lines. The default value is a new line \n. You can force all output to be displayed in a single line regardless of --line by setting this option to an empty string --record=.

The following additional format markers are available:

The first %d after %s displays the largest number in the data set.

The second %d displays the smallst number in the data set.

The third %d displays the total number of fields in the record.

For example, "\tMAX %5d | MIN %5d\n" will display each record in a single line, followed by a tab and the largest and smallest value; right-column aligned by 5 spaces.

		-M, --max=number:
Set the maximum value in the dataset. If this option is set, Shark does not calculate the max value and uses number instead.

Typically, Shark must read the entire dataset, or line record if --line was used, in order to calculate both min and max and draw a sparkline.

Use this option together with --min=number to process and draw the input in real time.

		-m, --min=number:
Set the minimum value in the dataset. If this option is set, Shark does not calculate the min value and uses number instead.

Use this option together with --max=number to draw the input in real time.

		-d --delim=regex:
Use regex as the number delimiter. This value is used to extract numbers from each line of the input. The default value is [,].

		--null=string:
Use string to display null values in the dataset. Items that could not be parsed from the dataset as numbers, will be displayed using string. A white space " " is displayed by default. To print nothing, use an empty string "".

		-v --version:
Show version information.

		-h --help:
Show usage help.

EXAMPLES

This section describes the bundled examples.

To run the examples:

source examples/shark.fish

		Display a single record line.

seq 8 | shark

		Draw two lines processing each record as a separate dataset. Draw each record in a new line.

printf "%s\n" "1 2 3 4 5" "100 200 300 400 500" | shark -n

Run the same example above without any flags to study -n‘s behavior and with -nr to draw everything on the same line.

		Draw a random sequence of numbers.

for i in (seq 42)
 random
end | shark

		Visualize bubble sort.

for i in (seq 100)
 printf "%s " (random)
end | awk -f bs.awk | shark -nr\r

		Visualize quick sort.

for i in (seq 100)
 printf "%s " (random)
end | awk -f qs.awk ' | shark -nr\r

		Display realtime data.

curl -s $data | shark --min=0 --max=32766 -r\r

		Display a moving wave through the terminal.

while true
 printf "0$i + 1\n" | bc | read -l i
 ruby -e "
 (0..`tput cols`.to_i - 1).collect{|x|
 printf '%s ', (6 * Math::cos((x + $i) * Math::PI/5)).ceil
 }
 " | shark -d"[-|]" --record="\r"
end

		See also https://github.com/holman/spark/wiki/Wicked-Cool-Usage for more examples.

AUTHORS

Shark was created by Jorge Bucaran j@bucaran.me.

CREDITS

Shark draws heavily from Zach Holman’s original Spark. Thanks to him.

BUGS

From https://github.com/fish-shell/fish-shell/issues/206, redirections and pipes involving blocks are run serially, not in parallel. This causes Shark to block the pipeline and buffer the output when you pipe it to another command.

[STDIN] | shark | formatter

WORKAROUNDS

You can run Shark as an executable file, by adding the source to a file with a shebang and copying it to a directory in your $PATH, e.g., /usr/local/bin.

awk 'BEGIN { print "#!/usr/bin/env fish" } // END { print "shark $argv" }' shark.fish > shark
chmod +x shark
cp shark /usr/local/bin

Now you should be able to pipe Shark’s output to formatter and process the data without blocking.

function formatter
 set -l LO \u2581
 set -l HI \u2588

 set -l R (set_color red)
 set -l G (set_color green)
 set -l N (set_color normal)

 sed "s/$LO/$RLON/g;s/$HI/$GHIN/g"
end

set -l data https://gist.githubusercontent.com/bucaran/af98670d9c301c89b3ed/raw
curl -s $data | shark -n | formatter

formatter is used above to color lower ticks red and the highest block ticks green.

Another more practical, but less flexible workaround is running Shark inside a fish(1) child process.

curl -s $data | fish -c "shark -n" | sed "s/$LO/$RLON/;s/$HI/$GHIN/"

Note: Shark must be installed as a function in your $fisher_function_path. Otherwise, it will not be available to the child process.

SEE ALSO

		examples/shark.fish

		https://github.com/fish-shell/fish-shell/issues/206

		https://github.com/holman/spark/wiki/Wicked-Cool-Usage

		https://en.wikipedia.org/wiki/Sparkline

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

_static/up.png

search.html

 Navigation

 		
 index

 		Shark stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

